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Alntract--An extremum variational principle for two non-linear boundary value problems is formulated, 
The first boundary value problem corresponds to the coupled diffusion reaction with high-order kinetics, 
The second boundary value problem describes zero-order chemical kinetics in a single catalyst pellet with 
Robin boundary conditions at the pellet's outer surface. For both problems, approximate solutions and 

their error estimates for several values of the parameters are obtained. 

I N T R O D U C T I O N  

Cm~MICAL reaction and diffusion problems often lead 
to non-linear boundary value problems for ordinary 
and partial differential equations. For example, 
steady-state problems with a single reaction are de- 
scribed by a boundary value problem of the form [1] 

and 

dy dy 
f o r x = 0  ~ = 0 ;  f o r x = l  -~=Bi(l--y). (2) 

In equations (1) and (2) y denotes the non-dimen- 
sional concentration, x the (single) space coordinate, 
s depends on the problem geometry and has the values 
0, l, 2 for a slab, cylinder and sphere, respectively, 
and Bi is the Blot number. 

The functionf0(y) may have a variety of  forms and 
in what follows we shall assume that it is given by 

~(l+k)f  
(i) f0(y) = k + y  ~ (3) 

and 

0i) fo (y )  = 02.v ". (4) 

In equations (3) and (4) ~b 2 is the Thiele modulus, n 
the reaction order and k the non-dimensional par- 
ameter that measures the influence of the catalyst on 
the process. 

Thus equations (1) and (2) with fo given by (i) 
describe the diffusion reaction with nth order kinetics 
inside a single catalyst pellet, while equations (1) and 
(2) with f0 given by (ii) describes the diffusion reaction 
with nth order kinetics. 

Different aspects of  the boundary value problem, 
equations (1) and (2), withfo given by equation (3) 
were studied, for example, in refs. [1-5]. 
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In what follows we shall treat the boundary value 
problems (1), (2), (3) and (1), (2), (4) by a variational 
procedure developed in ref. [6]. Thus we shall first 
construct an extremum variational principle for both 
problems. Then this principle will be used to obtain 
an approximate solution to the problem. Finally, the 
error in the approximate solution will be estimated. 
The error estimating procedure presented here is 
somewhat different from the procedure presented in 
ref. [6]. 

V A R I A T I O N A L  P R I N C I P L E  

(i) First we consider diffusion inside a single catalyst 
pellet. In this case fo(Y) is given by (i), that is the 
diffusion process is described by 

d (x~dy) ~ 2 ( l + k ) f  = 0  (5) 
x - ~ x \ "  ~x)- k + f  

dy dy 
d'-~ = 0 for x = 0, ~xx = Bi(l-y) for x = 1. (6) 

The variational method developed in ref. [6], when 
applied to equations (5) and (6), shows certain diffi- 
culties in the error estimating procedure. Therefore, 
we transform equations (5) and (6) by introducing a 
new independent variable by the relation 

t = x t+'. (7) 

Then equations (5) and (6) become 

d f ~/(I +,> dy~ Ay" 
dr L Dt d-tJ- k + f  = 0 (8) 

lim r ' / °  + "> ----~ = 0 
,~o dt 

~/JD (1 -y(l)) dy(l) 
--87-= (9) 
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A 

c .  
Co 
D 
L, .~, G 
L I , , I ,  

H 
f 
f0(y) 
dm 
m 

constant, ~2(1 +k)  
Biot number 
constant in expression (29) 
constant in expression (A4) 
constant, (1 +s)  2, s = 0, 1,2 

Lagrangian density 
functional in equations (11), (16) and 
(27), respectively 
Hamiltonian function 
error of approximate solution 
generating function in equation (1) 
constant in expression (33) 
constant, 2s/(l +s),  s = 0, 1,2 

NOMENCLATURE 

n 

k 

P 
t 
X 
Y 

constant, order of reaction 
constant, measures the influence of the 
catalyst 
generalized momentum 
new independent variable 
space coordinate 
non-dimensional concentration. 

Greek symbols 
ct constant in equation (41) 
fl, ~ constants in the trial solutions 
~2 Thiele modulus 
(])cr critical value of Thiele modulus. 

where A = ~2(i +k )  and D = ( l + s )  2. Let 

f" A¢' F(y) = j ~ oq (10) 

then it is easy to see that equations (8) and (9) are 
equivalent to the stationary condition (M = 0) for the 
following functional : 

I =  L d t - { y ( 1 ) - [ y ( l ) 2 / 2 l } x / D  Bi ( l l )  

where 

D /' '~dy 2 
L = ~  t ~ - ~ ) + F ( y )  (12) 

and m = 2 s / ( l  + s ) .  
From equation (12) we can define a generalized 

momentum as 

aL 
p = ~-~ = DtmP (13) 

where (') = d( )/dt. The Hamiitonian of the problem 
becomes 

p2 
H = p .P-L  = 2Dtm - F ( y )  (14) 

so that the canonical equations corresponding to 
equation (8) read 

dH p 
Op Ot" 

aH ,4f' 
p =  dy = k+y~.  05)  

We can now apply the procedure developed in ref. [6] 
to problem (8), 05).  Let y be the exact solution to 
equations (8) and (9). From ref. [6] we conclude that 
the functional I~ given by 

~0 I I, = .Z(Y, I;', ~r)dt-(DtmY~')~ (16) 

with 

.~( Y, ~', ~) = Dtm~ 2 + F( Y) + Pc~( P ) -  F[y = ~b(P)] 

(]7) 

where 

P ---- Dmt m-' Y + D t " Y  

= \ A - e /  08) 

is stationary (5! -- 0) for y = Y. Also. [...]~ in equa- 
tion (16) is used to denote the difference of the values 
of the function in brackets calculated for t -- l and 0, 
respectively, In equation (16) Y is an admissible trial 
function that satisfies boundary conditions (9). More- 
over, functional (16) has for Y = y the value zero (see 
p. 206 of  ref. [6]). Therefore, we have 

l , (y)  = 0, M , ( y , f )  = O, f =  Y - y .  (19) 

In the analysis that follows Y will be an approximate 
solution to the boundary value problem (8), (9). Then 
the error of the approximate solution will be expressed 
in terms o f f =  Y - y .  Expanding I,(Y) as 

I,(IO = I , ( y ) + M , ( y , f ) +  ½5: l , (V, f )  (20) 

where t~21, is the second variation o f / ,  and 

~ P = y + e f ,  0 < e < l  (21) 

and observing equations (19), we obtain 

I, (Y) = ½62I, (V, f'). (22) 

Note that f satisfies the following boundary conditions 
(of. equations (9)) 

lim t "/°+*) f ( t )  = 0 
t ~ O  

l x / ( D ) f ( l )  + f ( 1 )  = (23) 0. 
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Calculating the second variation of equation (16), and 
using it in equation (22), we have 

1 [o t [-kAnW"-' 2 ~-2 I,(Y) = +2Dt f 

, [a,\l ' /+ t")')'] dt. +D" - -  kOp)l~=n,,r_,,+Dt"¢O( rnt'- 

(24) 

From equation (24) we shall determine a bound on 
the L2 norm off .  

(ii) We consider now the diffusion reaction with nth 
order kinetics described by 

d ( ~ )  
x- . ' ~  .e -~-'y~ = 0 (25) 

with boundary conditions (6). Introducing a new 
dependent variable t by equation (7), equation (25) 
becomes 

+~)dy _ 2 =0.  

The boundary conditions corresponding to equation 
(21) are given by equations (9). Repeating the same 
procedure as in case (i) we conclude that the exact 
solution y to equations (26) and (9) gives a stationary 
value to the functional 

~o'[ 1 y,,+, /2 = Dtm Y'2 q- ~2 n-" ~ 

rt, ) Jdt-(o,"m'. (27) 
In equation (25) Y belongs to the same class of  admiss- 
ible trial functions as defined in case (i). Also, if 
f = Y -y ,  where y is the solution of equations (26) 
and (9), then by the same argument, we obtain 

'Io[ I,(Y) = ½6212(W,f) = - D f ( 1 ) f ( l ) +  ~ 2Dt"f 2 

+ n ~ 2 W " - ' f " +  ~ n(W)t - )/ ( m e -  f 

+ t~) ' )2 ]  dt. (28) 

Again, equation (28) will be the basis for estimating 
the error of an approximate solution Y to the bound- 
ary value problem (26), (9). 

ERROR ESTIMATING PROCEDURE 

In this section we shall derive bounds on a certain 
norm of the function f = Y-y. The basis for our 
analysis are relations (24) and (28). The method pre- 
sented here is slightly different from the method pre- 
sented in ref. [6]. Namely, here we shall not assume 
that the approximate solution Y is close, in some 

sense, to the exact solution y. Again we consider two 
cases. 

(i) Suppose that (dO/OP) >>, O. Let C,. be a constant 
such that 

f0' [2Dt,,f2_t kAnt"- '  ( -~ -~ -~ f2]d t  >~ C,, fo f'-dt. 

(29) 

In the Appendix we shall show how C,, can be deter- 
mined. Then using expression (29) in equation (24), 
we obtain 

- 2 D f ( l ) f ( l ) + G ,  Ilftl 2 <~ 21,(Y) (30) 

where 

(;o Ilfll = f2d t )  `/2. 

From expression (30) we can, in certain cases, estimate 
the L= norm of f .  For example, if f (1)  = 0. then the 
Cauchy inequality gives 

[If[tL~ = sup If(t)l ~< Ilfll (31) 
tel0, I I 

so that expression (30) gives 

r2l ,(Y)] ''2 (32) 
IIflIL~ ~< L c .  j 

(ii) From equation (28) we can derive an estimate 
similar to expression (30). Suppose that in equation 
(28) ~ >1 0 and let dm be a constant such that 

Io [2Dt,,f2 + n~2W,- ,f2] dt >I dm f-" at. (33) 

Then, using expression (33) and the fact that q0/> 0 
in equation (28), we obtain 

dmllfll~_:-2Df(l)f(i) <~ 212(Y). (34) 

Again, if f ( l ) =  0, then the Cauchy inequality and 
expression (34) give 

II f II L~ ~< (35) 

The value of the constant dm in expression (33) is 
determined in the Appendix. 

NUMERICAL  RESULTS 

In this section we shall find an approximate solution 
to the boundary value problem (1), (2) for f00') given 
by equations (3) and (4) and for a few specific values 
of  characteristic constants. 

(i) Consider first the boundary value problem (1), 
(2), (3) for 

s = 0 ,  Bi=co, n =  1. (36) 

We assume an approximate solution in the form 
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Table 1. Numerical results for generating function (3) 

s Bi n k ~2 I,(Y) # ~ II fllL~ ~< 

0 oo 1 3 1 1.13x10 -~ 0 .37 2 .13 3.132x10 -2 
0 oo I 3 4 1.72x 10-2 0.75 2.7 9.88x 10 -2 

Y = (1 - fl) + ]/t r (37) 

where ~ and 7 are constants to be determined. Note 
that equation (37) satisfies boundary conditions (9) if 
V > 1. The functional (16), after using (36), becomes 

I, = {k4,2(1 + k )  In k4,2(I +k )  + I >' 

+4,2(1 + k )  Y-k~ ' - k4 ,2 ( l  +k) In (k+  Y) 

-k4 ,2 ( l  -Fk)[4,2(l + k ) -  ~)]} dt. (38) 

C o n s t a n t s / / a n d  ? in equation (37) are determined 
by substituting equation (37) into equation (38) and 
minimizing with respect t o / / a n d  7. The results toge- 
ther with error estimate (32) are given in Table I. We 
also treated the case when k << 1 and 4, has the value 
larger than the critical value, which in the case of  slab 
catalyst (s = 0) reads [3] 

( 2 '~ '/2 
4,~ = \ ~ . ]  . (39) 

For  this case we assume an approximate solution in 
the form 

Y(t) = 0 for t ~ [0, ~] 

Y(t) =~Z~_a+[l[ct-(l+a)t+t 1 for te[ :q 1] (40) 

where • defines a point, inside a catalyst pellet, from 
which the concentration of chemical reactant is equal 
to zero. Its value was determined in ref. [3] and for 
Bi = oo reads 

= 1 -  - - .  x/2 (41) 
4, 

We used ~ defined by equation (41) and a trial func- 

tion (40) in functional (38). The constant p was deter- 
mined by minimizing It. The values for sample cal- 
culations are presented in Table 2. 

(ii) Consider now the boundary value problem (1), 
(2), (4) for 

s = O, Bi = 10 ~, n = 2 ; 5 ; 10. (42) 

Functional (27) in this case becomes 

f o ' [  n / ~ ' " / " ' l  t2(r3 -- ~':+ 4,' Y"+'+ 

- B i l l -  r ( l ) l r ( l ) .  (43) 

We used a trial function in the form 

Y = ( 1 - / J - - f f i i ) + / 3 t .  (44) 

Function (44) satisfies boundary conditions (9) for all 
values of  cons tants / /and  y. By substituting equation 
(44) into equation (43) and minimizing with respect 
to p and ~, the results shown in Table 3 were obtained. 

CONCLUSION 

We have shown in this paper that the variational 
principle formulated in ref. [6] could be successfully 
used for finding approximate solutions of non-linear 
diffusion-reaction problems of  the type (1), (2), (3) 
and (1), (2), (4). The error estimate procedure, based 
on the value of  the functional, is also presented. 

For  sample calculations we used simple one- and 
two-parameter trial functions which, in certain cases, 
showed remarkable accuracy. For  approximate solu- 
tions with better error estimates one would have to 
use more elaborate trial functions. 

Table 2. Numerical results for generating function (3) and k << 1 

s Bi n k 02 ll(Y) ff [I f [[L~ ~< 

0 oo 1 0.001 10 1.1 x 10 - z  5 1.04x 10 -I  
0 o0 I 0.001 40 4.22x 10 -z 20 2.04x 10 -I  

Table 3. Numerical results for generating function (4) 

s Bi n ¢~: I,(Y) ~ ? [[fl[~+2Bif'(l) <~ 

0 106 2 2/3 1.09x 10 -3 0.229 2.11 2.2x lO -~ 
0 106 5 1/3 3.16x 10 -4 O.ll 2.1 6.3x 10 -4 
0 lO s 10 2/11 8.71 x 10 -s 0.059 2.12 1.74x 10 -4 
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APPENDIX 

(i) Let us determine a lower bound to C,, in expression 
(29) for 

re=O, n = l ,  B i = ~ .  (AI) 

We first determine a bound on (k+~P) in expression (29). 
Note that the exact solution y of equations (8) and (9) 
with s = 0 has the bound y(t) ~< I. This follows easily from 
equations (8) and (9) since y(t) is a convex increasing 
function. Now, we shall choose an approximate solution ¥(t) 
so that Y(t) < I. Then, from equation (21) it follows that 
~P ~< 1. Therefore 

kA kA 
(k+V) ~ >-" (k+ l) e" (A2) 

Then, we obtain 

' 2 kA 

We determine now a large constant Co so that 

~ f  ) d t ; ~ c o f  ° fXdt. (A4) 

From expression (A4) it follows that 

(2-Co)f2  + f~ dt>~0. (A5) 

Boundary conditions (23), taking into account equation 
(Al)3, become 

f(0) = 0, f ( I )  = 0. (A6) 

The best constant Co in expression (A5) for all C:([0, l], R) 
functions f that satisfy equations (A6), can be obtained by 
the method described in ref. [7]. Thus, with 

kA 
G = ( 2 -  co) f  ~ + ~ f2 (A7) 

we form the Euler-Lagrange equation 

d OG OG . 2kA 
dt 0-7 - ~ = 2 (2 -  Co) ) ' -  ~ f = 0. (A8) 

The lowest mode solution to equation (A8) that satisfies 
equations (A6) leads to 

4kA 
Co = 2+ (1 +k)~rt - - - - - ' ~ "  (A9) 

(ii) Consider inequality (33) for m = 0. Let D, be a non- 
negative constant such that 

inf (n~Zq ~'-~) i> D,,. (AIO) 
t~(O,I) 

Then, repeating the procedure leading to equation (A9), we 
obtain 

do = 2+ 4D--2 (AI 1) 
~2  " 

UN PRINCIPE VARIATIONNEL EXTREMAL POUR QUELQUES PROBLEMES NON 
LINEAIRES DE DIFFUSION 

R~sumr--On formule un principe variationnel extrrmal pour des probi~mes non lin~aires de valeurs limites. 
Le premier problrme correspond a la diffusion coupi~ ~ une cin~tique chimique d'ordre 61evr. Le second 
probi~me dr:rit une cinrtique chimique d'ordre z~ro dans un boulet unique catalyseur avec des conditions 
de Robin sur la surface du boulet. Pour Ins deux problrmes, on obtient des solutions approch~es avec 

estimation de l'erreur pour plusieurs valeurs des param~tres. 

EIN EXTREMWERT-VARIATIONSPRINZIP FOR EINIGE NICHTLINEARE 
DIFFUSIONSPROBLEME 

Zusammenfasmng--Es wird ein Extremwert-Variationsprinzip ffir zwei nichtlineare Randwertprobleme 
formuliert. Das erste Randwertproblem entspricht der gekoppelten Diffusion und Reaktion mit Kinetik 
h6herer Ordnung. Das zweite Randwertproblem beschreibt die chemiscbe Kinetik nullter Ordnung in 
einem einzelnen Katalysator-Pellet mit Randbedingungen uach Robin an der iuBeren Oberflache. Ffir 
beide Probleme werden Naherungsl6sungen und entsprechende Fehlerabschatzungen ffir einige Werte der 

Parameter ermittelt. 

IIPHMEHEHHE BAPHAUHOHHOFO I ' I P H H ~ r I A  ~KCTPEMYMOB K HEKOTOPblM 
HFJIHHEI~HblM 3 A J ~ q A M  ,~I4~xbY3HH 

Assol~m~-C4mp~o/~mposan mapHamnoumd npsmmn ~ o ~  arm ~ y x  Re.~Kue~mMx ~'paesux 
3aaaq. rlepsan gpae~a ~uaqa cooTeerc~y~r O~loapeMemlOMy n p o T e E ~  JmC~y3uomtoro npo- 
aecca H npouecca pearapo~Jma c xaneTmtOfl B~cozoro nopaajm. BTop4ta gpaeaa,q :~jlaqa om~ct~acr 
XnM~ecgym ramelwgy nyneBoro nopa~ga B c~r~enbtto~ rpasyne g a ~ T o p a  c ~ yCaO- 
BmtMH na sHeumell not~,pxaoc~, o x a p a r r e p x 3 o ~  P06gllOM. ~ o6egx 3aaaq nonyqema npK6- 

m~xesmae pemem~ a ouemm norpeumocTeii npx xecxom, m~x 3saqesm~ napaMeTpos. 


