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Abstract—An extremum variational principle for two non-linear boundary value problems is formulated.

The first boundary value problem corresponds to the coupled diffusion reaction with high-order kinetics.

The second boundary value problem describes zero-order chemical kinetics in a single catalyst pellet with

Robin boundary conditions at the peliet’s outer surface. For both problems, approximate solutions and
their error estimates for several values of the parameters are obtained.

INTRODUCTION

CHEMICAL reaction and diffusion problems often lead
to non-linear boundary value problems for ordinary
and partial differential equations. For example,
steady-state problems with a single reaction are de-
scribed by a boundary value problem of the form [1]

L4 dy _
x a(x’a—)—c)—fo(y)—O, 0<x<l (1)
and
dy _ .. _ Y_
forx=0 E—O’ forx =1 i Bi(l-y). (2)

In equations (1) and (2) y denotes the non-dimen-
sional concentration, x the (single) space coordinate,
s depends on the problem geometry and has the values
0, 1, 2 for a slab, cylinder and sphere, respectively,
and Bi is the Biot number.

The function fy(y) may have a variety of forms and
in what follows we shall assume that it is given by

(1 +k)y"

k+y @)

O S =

and

(i) fo(») =%y @

In equations (3) and (4) ¢? is the Thiele modulus, n
the reaction order and k the non-dimensional par-
ameter that measures the influence of the catalyst on
the process.

Thus equations (1) and (2) thh Jfo given by (i)
describe the diffusion reaction with nth order kinetics
inside a single catalyst pellet, while equations (1) and
(2) with f, given by (ii) describes the diffusion reaction
with nth order kinetics.

Different aspects of the boundary value problem,
equations (1) and (2), with f; given by equation (3)
were studied, for example, in refs. [1-5].

In what follows we shall treat the boundary value
problems (1), (2), (3) and (1), (2), (4) by a variational
procedure developed in ref. [6]. Thus we shall first
construct an extremum variational principle for both
problems. Then this principle will be used to obtain
an approximate solution to the problem. Finally, the
error in the approximate solution will be estimated.
The error estimating procedure presented here is
somewhat different from the procedure presented in
ref. [6].

VARIATIONAL PRINCIPLE

(i) First we consider diffusion inside a single catalyst
pellet. In this case fy(y) is given by (i), that is the
diffusion process is described by

- dy.
¥ dx (r,dx>
d

Y _ -0 Y _
dx—o for x =0, e

(1+k
¢i:y)r=0 )

= Bi(l1—y) for x=1. (6)

The variational method developed in ref. [6], when
applied to equations (5) and (6), shows certain diffi-
culties in the error estimating procedure. Therefore,
we transform equations (5) and (6) by introducing a
new independent variable by the relation

t=x'*. 7

Then equations (5) and (6) become

d w0149 Y Ay
d:(D‘ A ki ®)
hm t"/(“") d_y =0
1~0 dr
dya
JD A () —y(1) ©)
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L,¥%,G Lagrangian density
LI, 1, functional in equations (11), (16) and

(27), respectively
H Hamiltonian function
f error of approximate solution
Jfo(¥)  generating function in equation (1)
dm constant in expression (33)
m constant, 2s/(1+s5),s=0,1,2

NOMENCLATURE
A constant, ¢>(1 +k) n constant, order of reaction
Bi Biot number k constant, measures the influence of the
C. constant in expression (29) catalyst
Co constant in expression (A4) generalized momentum
D constant, (1+5)%5s=10,1,2 new independent variable

p

t

x space coordinate

y non-dimensional concentration.

Greek symbols
@ constant in equation (41)
B.y constants in the trial solutions

¢? Thiele modulus
ODer critical value of Thiele modulus.

where A = ¢*(1+k) and D = (1 +5)% Let

y Aqﬂ
Fy)=| ——d
V) f kv (10)
then it is easy to see that equations (8) and (9) are
equivalent to the stationary condition (6 = 0) for the

following functional :

1
1=J; Ldr={y()-[y(1)*/2}/D Bi  (11)

where

2
L=§z~(ﬂ¥) +F(y) (12)

dr
and m = 25/(1+3).

From equation (12) we can define a generalized
momentum as

oL

p=5yr=Dly 13)

where (7) = d( )/d¢. The Hamiltonian of the problem

becomes

p2
H=py—-L= 3D —F(y)

(14)

so that the canonical equations corresponding to
equation (8) read

oH Ay

5 iy (15)

We can now apply the procedure developed in ref. [6)
to problem (8), (15). Let y be the exact solution to
equations (8) and (9). From ref. [6] we conclude that
the functional 7/, given by

1
I, =J LY, Y, ydt— (D YY)} (16)
with
Z(Y,Y, V) = D" Y? + F(Y) + P¢(P) - Fly = ¢(P)]
an
where
P=Dm"'Y+Di"Y
kP \
o(P) = (A_—_I"_) 18)

is stationary (67 = 0) for y = Y. Also, [.. ], in equa-
tion (16) is used to denote the difference of the values
of the function in brackets calculated for ¢t = | and 0,
respectively. In equation (16) Y is an admissible trial
function that satisfies boundary conditions (9). More-
over, functional (16) has for Y = y the value zero (see
p. 206 of ref. [6]). Therefore, we have

L(n=0, o1,(0,/)=0, f=Y-y. (19

In the analysis that follows ¥ will be an approximate
solution to the boundary value problem (8), (9). Then
the error of the approximate solution will be expressed
in terms of /' = Y—y. Expanding 7,(Y) as

L) =1L+l (y, N+ LY. ) (0
where 827, is the second variation of /, and
¥Y=y+tef, O0<ex<l @2n
and observing equations (19), we obtain
I(Y)= 55211 . N (22)

Note that f satisfies the following boundary conditions
(cf. equations (9))

!mg ts/(l+:)f(t) =0

A W)+ () =0. e}
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Calculating the second variation of equation (16), and
using it in equation (22), we have

kAnP"-! ”
L(Y)=-Df()f()+5 j l:(k+\P”)2f2+2Dt 12

+D? ( )
opP
(24)

From equation (24) we shall determine a bound on
the L, norm of f.

(ii) We consider now the diffusion reaction with nth
order kinetics described by

L d L dy
v dt( x> ¢’y =0

with boundary conditions (6). Introducing a new
dependent variable ¢ by equation (7), equation (25)
becomes

+ Dt"¥Y(mtm ‘f+t'"f")2] de

P=Dm/"" 'Y

(25)

d 25:(1+5) dy 2.0 _
T (Dt dt> ¢’y =0. (26)
The boundary conditions corresponding to equation
(21) are given by equations (9). Repeating the same
procedure as in case (i) we conclude that the exact
solution y to equations (26) and (9) gives a stationary
value to the functional

I
12 j |:Dtmy2+¢2 1 Yn+l
0

n f YY" ot

+ P Y(F) ]dt— DrYY)e. (27)
Inequation (25) Y belongs to the same class of admiss-
ible trial functions as defined in case (i). Also, if
f = Y—y, where y is the solution of equations (26)
and (9), then by the same argument, we obtain

L(Y) =18’L(¥, N = ~Df)f()+ %L [2Dt"'f’

+n¢2\yn—1f + _(\y)(l—n)/n( e lf

e ]‘)2] dr. (28)

Again, equation (28) will be the basis for estimating
the error of an approximate solution Y to the bound-
ary value problem (26), (9).

ERROR ESTIMATING PROCEDURE

In this section we shall derive bounds on a certain
norm of the function f = Y—~y. The basis for our
analysis are relations (24) and (28). The method pre-
sented here is slightly different from the method pre-
sented in ref. [6]. Namely, here we shall not assume
that the approximate solution Y is close, in some
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sense, to the exact solution y. Again we consider two
cases.

(i) Suppose that (2®/3P)

such that
1 1
'[ [21):'" i+ m'[ fde
0 0
29

In the Appendix we shall show how C,, can be deter-
mined. Then using expression (29) in equation (24),
we obtain

=2DF(Df)+Cll f 112

/1= (f f? dt)m

From expression (30) we can, in certain cases. estimate
the L, norm of f. For example, if f(1) = 0, then the
Cauchy inequality gives

2 0. Let C,, be a constant

kAny!
(k_*_l{;n)z fz]

<2,(Y)  (30)

where

W fhe, = S{l(l)p”|f(t)| <1/ 3D
so that expression (30) gives
2I,(Y) |2
1fle, < [-——C‘ )] . 32)

(ii) From equation (28) we can derive an estimate
similar to expression (30). Suppose that in equation
(28) ¥ > 0 and let dm be a constant such that

J (2D £ + ng?g-" fz]dtzdmf frdr. (33)
0 0

Then, using expression (33) and the fact that ¥ > 0
in equation (28), we obtain

dml| f112,-2Df (1) f ()

Again, if f(1) =0, then the Cauchy inequality and
expression (34) give

21
||fnL:<[ = ] :

The value of the constant dm in expression (33) is
determined in the Appendix.

2L(Y). (39

(33%)

NUMERICAL RESULTS

In this section we shall find an approximate solution
to the boundary value problem (1), (2) for fo(y) given
by equations (3) and (4) and for a few specific values
of characteristic constants.

(i) Consider first the boundary value problem (1),
(2), (3) for

s=0, Bi= n=1. (36)

We assume an approximate solution in the form
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Table 1. Numerical results for generating function (3)

s B n k¢ L B r o ISl <
0 ® 1 3 1 1.13x107% 037 213 3.132x107?
0 s 1 3 4  1L72x107% 075 2.7 9.88x10-2

Y=(1-p+pr 37

where # and y are constants to be determined. Note
that equation (37) satisfies boundary conditions (9) if
¥ > 1. The functional (16), after using (36), becomes

I = jl {k¢*(1+k) Inkp*(1+k)+ ¥?
0

+¢X(1+k)Y—kV~kp*(1+k)In(k+Y)
—k¢p* (1 +k)[p2(1+k)— ]} de. (38)

Constants § and y in equation (37) are determined
by substituting equation (37) into equation (38) and
minimizing with respect to # and y. The results toge-
ther with error estimate (32) are given in Table 1. We
also treated the case when k « 1 and ¢ has the value
larger than the critical value, which in the case of slab
catalyst (s = 0) reads [3]

2 1/2
oo~ (r53m) -

For this case we assume an approximate solution in
the form

Y()=0 for

(39)

tef0,a]

Y(n) = ﬂ+ﬁ[¢—(l+a)l+t’] for te[z, 1]

1—a (40)

where a defines a point, inside a catalyst pellet, from
which the concentration of chemical reactant is equal
to zero. Its value was determined in ref. [3] and for
Bi = oo reads

J2

a=1—>-.

¢
We used « defined by equation (41) and a trial func-

@én

tion (40) in functional (38). The constant  was deter-
mined by minimizing /,. The values for sample cal-
culations are presented in Table 2.

(ii) Consider now the boundary value problem (1),
2), @) for

s=0, Bi=105 n=2;5;10. (42)

Functional (27) in this case becomes

1 2 I/n
L(Y) =L [YZU% Y"*'+n—:—l— Y((b—}:) ]dt

—-Bi[l-Y(DIY(1). (43)
We used a trial function in the form
- By, g
Y= <1—B—E)+ﬂt. (44)

Function (44) satisfies boundary conditions (9) for all
values of constants § and y. By substituting equation
(44) into equation (43) and minimizing with respect
to B and 7y the results shown in Table 3 were obtained.

CONCLUSION

We have shown in this paper that the variational
principle formulated in ref. [6] could be successfully
used for finding approximate solutions of non-linear
diffusion-reaction problems of the type (1), (2), (3)
and (1), (2), (4). The error estimate procedure, based
on the value of the functional, is also presented.

For sample calculations we used simple one- and
two-parameter trial functions which, in certain cases,
showed remarkable accuracy. For approximate solu-
tions with better error estimates one would have to
use more elaborate trial functions.

Table 2. Numerical results for generating function (3) and k « |

s Bi n k ¢ 1(7) B I, <
0 ) 1 0.001 10 L1x10-2 5 1.04x 10"
0 ® 1 0.001 40 4.22x10"? 20 2.04%x10"

Table 3. Numerical results for generating function (4)

s B n & 1Y) B v W1 +2Bif () <
0 10° 2 23 109x10°* 0229 2.1 223x10-?
0 10° 5 1/3 316x10°* 011 2 6.3x107*
0 10° 10 /11 871x10"* 0059 212 1.74x10-*
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APPENDIX

(i) Let us determine a lower bound to C,, in expression
(29) for

m=0, n=1, Bi= (Al)

We first determine a bound on (k+'¥) in expression (29).
Note that the exact solution y of equations (8) and (9)
with s = 0 has the bound y(7) < 1. This follows easily from
equations (8) and (9) since y(f) is a convex increasing
function. Now, we shall choose an approximate solution Y(r)
so that Y(f) < 1. Then, from equation (21) it follows that

¥ < 1. Therefore
kA kA
— ; —
(k+¥)2" (k+1)2 (A7)

Then, we obtain
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2
J (zf “ T/ )
! kA
2 2
zJ:) (2f +_(1+k)2f )dz (A3)
We determine now a large constant C, so that
' 2 kd ., 'h
di. 4
ﬁ(z} +(l+k)2f)d'>c°_[,f t (Ad)
From expression (A4) it follows that
! kA
_ 2 2
L{(z Cof +(1+k),f }dz;O. (AS)

Boundary conditions (23), taking into account equation
(Al),, become
fO =0, f(h=0 (A6)

The best constant C, in expression (AS) for all C*([0, 1], R)
functions f that satisfy equations (A6), can be obtained by
the method described in ref. (7). Thus, with

2 2 7
=@-Cof+ g +k)zf (A7)
we form the Euler-Lagrange equation
d oG oG
=2(2-Cyp)f - (A8)

draf ~of a +k)2 v/ =0
The lowest mode solution to equation (A8) that satisfies
equations (A6) leads to
4kA
(14+k)2n?’
(ii) Consider inequality (33) for m = 0. Let D, be a non-
negative constant such that

inf (n¢>¥"-" = D,.

1e(0.1)

Then, repeating the procedure leading to equation (A9), we
obtain

Co=2+ (A9)

(A10)

4D,
dy =2+ —7.

(ALD)

UN PRINCIPE VARIATIONNEL EXTREMAL POUR QUELQUES PROBLEMES NON
LINEAIRES DE DIFFUSION

Résumé—On formule un principe variationnel extrémal pour des problémes non linéaires de valeurs limites.

Le premier probléme correspond a la diffusion couplée a une cinétique chimique d’ordre élevé. Le second

probléme décrit une cinétique chimique d’ordre zéro dans un boulet unique catalyseur avec des conditions

de Robin sur la surface du boulet. Pour les deux problémes, on obtient des solutions approchées avec
estimation de I’erreur pour plusieurs valeurs des paramétres.

EIN EXTREMWERT-VARIATIONSPRINZIP FUR EINIGE NICHTLINEARE
DIFFUSIONSPROBLEME

Zusammenfassung—Es wird ein Extremwert-Variationsprinzip fiir zwei nichtlineare Randwertprobleme

formuliert. Das erste Randwertproblem entspricht der gekoppelten Diffusion und Reaktion mit Kinetik

héherer Ordnung. Das zweite Randwertproblem beschreibt die chemische Kinetik nullter Ordnung in

einem einzelnen Katalysator-Pellet mit Randbedingungen nach Robin an der duBeren Oberfliche. Fiir

beide Probleme werden Niherungsidsungen und entsprechende Fehlerabschitzungen fiir einige Werte der
Parameter ermittelt.

INMPUMEHEHHWE BAPHAIITHOHHOI'O MPUHIIMUITA 9KCTPEMYMOB K HEKOTOPBIM
HEJTMHENHBIM 3AJAYAM OHOOY3IMU

Amoramms—ChopMyHpOBaH BaDHAHOHHLIA NPHHIMEN 3KCTPEMYMOB A1 ABYX HEMHHEHHBIX KPaeBRIX
3anav. [leppas xpaesas 3ajaia COOTBETCTBYET ONHOBPEMCHHOMY NpOTexaHMio AM(QY3IMOHHOrO Mpo-
[eCCa H NpOoNecca PearHpoBaHMs ¢ KMHETHXOM BuICOKOro nopanxa. Bropas xpaceas 3aAa4a OOHCHIBACT
XAMHYECKYIO KHHCTHKY HYJICBOrO MOPAAXa B OTACHLHON rpadysne xaTaqH3aTopa ¢ rpaHHYHBIMHE YCIO-
BHSAMH Ha BHCLIHEH NOBEPXHOCTH, OXapakTepR30BaHHMME PoGunoM. e 06erx 3amad nosyvens npub-
JTHXCHHBLIE PCIICHHS M OICHKH NOTPEUIHOCTeH MPH HECKONLKEX 3HAYCHHAX NAPaMETPOB.



